
Glioblastoma (GB) is highly vascula-
rised tumour, known to exhibit en-
hanced infiltrative potential. One of 
the characteristics of glioblastoma is 
microvascular proliferation surround-
ing necrotic areas, as a  response to 
a hypoxic environment, which in turn 
increases the expression of angiogen-
ic factors and their signalling path-
ways (RAS/RAF/ERK/MAPK pathway, 
PI3K/Akt signalling pathway and WTN 
signalling cascade). Currently, a small 
number of anti-angiogenic drugs, 
extending glioblastoma patients sur-
vival, are available for clinical use. 
Most medications are ineffective in 
clinical therapy of glioblastoma due 
to acquired malignant cells or intrin-
sic resistance, angiogenic receptors 
cross-activation and redundant in-
tracellular signalling, or the inability 
of the drug to cross the blood-brain 
barrier and to reach its target in vivo. 
Researchers have also observed that 
GB tumours are different in many as-
pects, even when they derive from the 
same tissue, which is the reason for 
personalised therapy.
An understanding of the molecular 
mechanisms regulating glioblastoma 
angiogenesis and invasion may be 
important in the future development 
of curative therapeutic approaches 
for the treatment of this devastating 
disease.
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Introduction

Glioblastoma (GB), first described in 1926 in the classification of brain tu-
mours by Cushing, is the most common primary brain cancer among adults 
and the most aggressive malignant brain tumour. GB has an incidence of 
1.26 : 1 (men vs. women) and a median survival rate of 13–16 months after 
standard therapy consisting of maximal resection, radiotherapy, and che-
motherapy with temozolomide. Unfortunately, the prognosis is poor with 
a survival rate of 5% at five years; there is a small increase in the survival 
rate for patients diagnosed under the age of 20. Only 10% of these types of 
malignant tumours are secondary neoplasm, evolved from low-grade brain 
tumours (e.g. anaplastic astrocytoma). The remaining 90% of GB are de novo 
glioblastoma multiforme and have a rapid progression of only three months, 
compared with the secondary glioblastoma that has a progression time of 
4–5 years [1–3]. Glioblastomas are highly vascularised tumours, known to 
exhibit enhanced infiltrative potential.

Angiogenesis is a central process in cancer progress by forming new cap-
illaries from pre-existing vessels using endothelial cell proliferation, migra-
tion, and new lumen organisation, succeeding the signalling of growth fac-
tors, proteins, and proteolytic enzymes. A number of studies investigated the 
different types of angiogenesis implicated in tumour development: sprout-
ing angiogenesis (the first studied form of vasculogenesis), intussusceptive 
angiogenesis, vasculogenic mimicry, and vessel co-option [4–6]. 

In recent years, new approaches in chemotherapy have targeted specific 
receptors such as vascular endothelial growth factor receptor (VEGFR), plate-
let-derived growth factor receptor (PDGFR), fibroblast growth factor receptor 
(FGFR), and epidermal growth factor receptor (EGFR), which are implicated in 
angiogenesis, tumour cell proliferation, and adhesion. Angiogenic receptors 
well studied in brain tumour include: EGFR, VEGFR, and PDGFR. VEGFR is 
involved in glioblastoma progression through several mutations, such as tu-
mour protein p53 (TP53) and protein kinase B/phosphatidylinositol 3-kinase 
(PIK3R1/PIK3CA). p53 (TP53) and PIK3R1/PIK3CA fail to inhibit VEGF, which 
in turn stimulate abnormal secretion of VEGF and VEGFR. EGFR overexpres-
sion, mainly by EGFRvIII mutation, occurring in 30–70% of primary GB is the 
most frequent mutation; its overexpression activates EGFR – phosphatidy-
linositol 3-kinase (PI3K) pathway. Also, new studies offer improved knowl-
edge of these receptors’ signalling pathways: mitogen-activated protein ki-
nase signalling (MAPK) pathway and protein kinase B/phosphatidylinositol 
3-kinase/mammalian target of rapamycin (AKT/PI3K/mTOR) pathway. AKT/
PI3K/mTOR pathway, frequently altered in GB, also with mutation of PTEN 
gene, makes up for the complexity and heterogeneity of GB, making it one 
of the most rational targets in GB [7–9]. As a consequence of the last two 
decades of research in glioblastoma, a better understanding regarding the 
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tumour’s biology, mechanisms to evade apoptosis, and ge-
netic profiling are defined now and are presented as clear 
targets for GB. Most importantly is the necessity of effec-
tive treatment for this aggressive malignancy, molecular 
therapy being one of the possible solutions.

Tumour heterogeneity and angiogenesis  
in glioblastoma

Angiogenesis is induced early in the stages of de-
velopment of malignant tumours and is pathologically 
promoted by a multitude of genetic alterations [10, 11]. 
Characteristic for angiogenesis in glioblastoma is micro-
vascular proliferation surrounding necrotic areas as a re-
sponse to a hypoxic environment, which in turn increases 
the expression of angiogenic factors and their signalling 
pathways (RAS/RAF/ERK/MAPK pathway, PI3K/Akt signal-
ling pathway and WTN signalling cascade) [12, 13]. Many 
in vitro and in vivo studies described and explained the 
importance of vascular endothelial growth factor (VEGF) 
system, platelet-derived growth factor (PDGF) system,  
fibroblast growth factor (FGF) system, insulin-like growth 
factor-1 (IGF-1) system, angiopoietins, and interleukins as 
pro-angiogenic factors in GB [14, 15]. All signalling path-
ways emerging from these molecules (MAPK pathway, 
PI3K/Akt pathway, and WTN signalling cascade) maintain 
normal cell proliferation, metabolism, and survival; how-
ever, persistent activation of these pathways is correlated 
with cancer development. Overexpression of angiogenic 
tyrosine kinase receptors (TKR) is a main factor in the de-

velopment of new vessels, and many modern molecular 
targeting therapies involve angiogenesis inhibition [16–18]. 
The various genetic alterations needed for development of 
primary and secondary glioblastoma and their interaction 
with tumour angiogenesis are illustrated in Figs. 1 and 2.

Genetic alterations are critical in developing glioblas-
toma multiforme, which proved to be a highly heteroge-
neous tumour. Genomic profiling has been able to differ-
entiate between primary and secondary glioblastoma and 
identified four subtypes of glioblastoma characterised by 
different molecular and genetic alterations, all influencing 
tumour angiogenesis [19, 20].

Genetic expression pattern classifies glioblastoma in 
classical, mesenchymal, neural and proneural subtypes. 
Importantly, secondary glioblastoma is predominately 
formed by the proneural subtype. The first three subtypes 
described above are known to present IDH-wild type mu-
tation; in contrast, proneural subtype appears to have 
a high frequency of IDH1/2 (isocitrate dehydrogenase) 
mutation. Histopathological differentiation was largely 
indistinguishable until IDH1/2 mutation was proposed for 
testing, making a definite diagnosis between secondary 
and primary glioblastoma. IDH1/2 mutation, a biomarker 
for secondary glioblastoma, is found to be positive in the 
majority of patients with this type of malignancy. Further-
more, the mutation is present in more than 80% of pa-
tients with diffuse and anaplastic astrocytomas, overall 
being correlated with better prognosis of the disease [21–
23]. IDH1/2 mutation along with PTEN mutation (phospha-
tase and tensin homolog) and EGFR overexpression con-
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Fig. 1. Molecular and genetic alteration in primary glioblastoma development 
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tribute to stabilisation of HIF-1α (hypoxia-inducible factor 
1α) switching to a proangiogenic phase by increasing tran-
scription of VEGF. Non-VEGF pathways that induce angio-
genesis in glioblastoma are PDGF, FGF systems, and direct 
interactions with surface tyrosine kinase receptors. Abnor-
malities in overexpression of VEGF, CD44, chitinase 3-like 1 
(CHI3L1/YKL40), LGALS3 (lectin, galactoside-binding, solu-
ble, 3) genes, TP53 mutations, PDGFRA amplification, PTEN 
mutation, ATRX mutation (α-thalassemia/mental retarda-
tion syndrome X-linked), loss of heterozygosity of 19q/10q 
(LOH 19q/10q), loss of chromosome 1p/19q, CIC/FUBP1 
(homolog of Drosophila capicua/far-upstream binding 
protein 1) mutation, potent regulators of cell growth, are 
key factors in the activation of pathologic cellular growth 
and aberrant angiogenic development [24]. Efforts to map 
the two different major types of glioblastoma provide not 
only a good diagnostic tool for prognostic and predictive 
biomarkers, but also for new and possibly personalised 
therapeutic targets for patients suffering from this ma-
lignancy. IDH1/2 mutation associated with ATRX mutation 
was significantly correlated with longer survival rates [25]. 
Moreover, recent observations after genetic profiling of 
glioblastoma contribute to a better prognosis for patients. 
One example is the good response to temozolomide and 
radiotherapy treatment in patients with glioblastoma with 
MGMT hypermethylation and IDH1/2 mutation [26]. A new 
study suggests the involvement of YKL40 in progression 
and drug resistance [27]. Tumour heterogeneity plays a key 
role in vascular response to treatment by activating sec-
ondary pathways for tumour angiogenesis, explaining why 
targeted therapies such as bevacizumab (a VEGF inhibitor) 

or cediranib (a potent VEGFR inhibitor) have such differing 
results in patients, some having poor response, others pre-
senting with favourable response [28]. 

Tyrosine kinase receptors and signalling 
pathways in glioblastoma angiogenesis

In vivo studies reported three VEGFR receptors: VEGFR1 
(Flt 1), VEGFR2 (Flk-1/KDR), and VEGFR3 (Flt4), all of them 
associated with tumour angiogenesis. VEGFR2, the main 
receptor of the VEGF system, has been reported to be im-
portant in GB angiogenesis, Flk1/KDR is present in endo-
thelial cells, and recent research studies have described 
the secretion of VEGFR2 by GB cells. Flk1 intracellular sig-
nalling is mediated through activation of RAS/RAF/ERK/
MAPK and PI3K/Akt signalling pathways [29, 30]. The ef-
fector proteins are activated after receptor binding to SH2 
domain like phospholipase C-δ (PLC δ), usually known to 
be involved in VEGFR signalling. VEGFR2 activation trig-
gers PI3K and phosphatidylinositol 3,4,5-triphosphate 
(PIP3), which in turn activates serine/threonine kinase 
Akt/PKB (protein kinase B). PI3K/Akt signalling pathway is 
involved in cell proliferation, cell survival, and endothelial 
cell migration [31–33]. Akt/PKB phosphorylation induces 
mTOR activation and apoptosis inhibition. mTOR pathway, 
through p70S6K (p70 ribosomal S6 protein kinase) and 
4EBP1(4E-Binding Protein), is known to mediate numerous 
physiological and pathological processes in angiogenesis, 
as well as modulating malignant cell proliferation and sur-
vival. Akt/PKB also stimulates angiogenesis through en-
dothelial nitric oxide synthesis (eNOS) [34, 35]. One study 
on GB cells reiterates the importance of PTEN mutation 
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in PI3K/Akt pathway activation; loss of PTEN triggers the 
accumulation of PIP3 and Akt activation, which in turn in-
hibits mTOR pathway. VEGFR activates PLC δ and protein 
kinase C (PKC), which consecutively activates a series of ki-
nases, including MEK and MAPK. PKCα and PKCβ are both 
involved in tumour progression. Supplementary PKCα, 
a substrate for PI3K, has properties in modulating cell sur-
vival by pro-mitotic and anti-apoptotic actions [7, 15]. In 
contrast, PKCβ is directly involved in angiogenesis, by link-
ing VEGFR2 and evading apoptosis through the interaction 
with PTEN/Akt. In a randomised clinical trial, one selective 
inhibitor PKCβ showed disappointing results, suggesting 
the presence of complex interconnections between PI3K/
Akt and other signalling pathways, as other compensatory 
pathways were activated. Tumour proliferation and clo-
nogenicity was shown to be linked to overexpression of 
VEGFR2, which also seems to act independently of VEGF 
in GB development [36, 37]. More recently, the expression 
of VEGFR3 in glioblastomas and haemangioblastomas was 
also described.

The PDGF family (PDGF-AA, PDGF-AB, PDGF-BB, PDGF-
CC, PDGF-DD) have a common growth factor domain 
named PDGF/VEGF homology domain. Two PDGFRs were 
reported in the literature: PDGFRα and PDGFRβ [14, 38]. 
PDGFRβ uses RAS/RAF/ERK/MAPK signalling pathway for 
tumour expansion by activating genetic mutations relat-
ing to DNA synthesis and mitosis. KRas protein expression 
occurs frequently in malignancies; however, new research 
suggests that KRas alone is not sufficient to induce glio-
blastoma genesis, additional activation of Raf-1, BRAF (ser-
ine/threonine-protein kinase B-Raf), ATRX mutation, and 
TP53 mutation is necessary for glioblastoma oncogenesis 
[39, 40]. Alone, PDGFR expression acts more as a biomark-
er for cancer than as a pro-oncogene. PDGFRβ is mostly 
linked to cell motility and proliferation. Autophosphory-
lation of PDGFR leads to an association between various 
phosphorylated tyrosine residues, which in turn activate 
RAS/RAF/ERK/MAPK and PI3K/Akt signalling pathways as 
well as the signal transduction and transcription activator 
(STAT) pathway [34, 40, 41]. Some research studies sug-
gest that the involvement of PDGFR in autocrine signalling 
pathways promotes cancer stem cells in glioblastoma [7, 
42, 43]. 

Another relevant receptor for tumour angiogenesis and 
expansion is EGFR, which is activated in approximately 
50% of primary glioblastomas. This receptor belongs to 
the ErbB family that consists of four human EGF receptors, 
Her1-4. The studies for endothelial growth factor receptor 
denoted a vast manner of pathway signalling: RAS/RAF/
ERK/MAPK and PI3K/AKT/mTOR signalling pathway, acti-
vation of Wnt/β-catenin, Notch, and TGF-β (transforming 
growth factor-β) extensively researched signal pathways 
[44, 45]. EGFR activation by binding to the ligand activates 
various molecules like Grb (2 and 7), JAKs (Janus kinases), 
Src (c-Src tyrosine kinase), PI3K, phospholipase C-δ, SH1, 
SH2, and STAT; RAS/MAPK signalling pathway, PI3K/AKT/
mTOR signalling pathway, after EGFR activation, modulate 
cell proliferation, differentiation, and survival [41, 46]; JAK/
STAT, STAT1, STA3 or JAK-independent activation trigger on 
transcription factors such as c-jun, c-fos, jun B and c-Myc. 

EGFR also interacts with Wnt/β-catenin pathway at vari-
ous points. Wnt/β-catenin pathway plays a significant role 
in the survival of several types of tumour cells, including 
brain tumours, making this pathway, in recent years, an 
important target for glioblastoma therapy. In cancer, in-
teraction of Wnt and Frizzled/lipoprotein-receptor relat-
ed protein (Fzd) generates the formation of the Dvl-Fzd 
complex (Dishevelled-Frizzled complex) that inactivates 
regulatory mechanisms including leukocyte enhance 
factor-1 (LEF-1) or T cell factors (TCF). TGF-β is frequent-
ly upregulated in glioblastoma, acting through the Smad 
(Mad-homologues, MADH) transcription factors family 
and receptor-regulated Smads (R-Smad). TGF-β pathway 
is implicated in glioma invasiveness and migration. Notch 
pathway is fundamental to normal development, and its 
deregulation is involved in tumour angiogenesis, cell pro-
liferation, and apoptosis. EGFR is able to modulate both 
TGF-β and Notch pathways, the latter being influenced in 
a smaller proportion by VEGFR [5, 47–49]. Tumour apopto-
sis is induced by the selective inhibitors of angiogenesis, 
tumour proliferation, and inhibition of pathways signalling 
and is facilitated by activation of caspase cascade (cyste-
inyl aspartate proteinases) [50]. 

FGFR, activated by FGF ligand, modulates a series of 
processes, including cell proliferation and cell migration. 
Through GAB1 (GRB2-associated binding protein 1), SOS1 
(Son of sevenless homolog 1), SHC1 (Src homology 2 do-
main containing transforming protein 1) and Grb2 do-
mains FGF1-FGFR activates RAS/RAF/ERK/MAPK signal-
ling pathway. New evidence shows that FGFR is involved 
in a number of pro-oncogenic processes in GB such as 
tumour invasion and proliferation, being correlated with 
a poor prognostic in patients with GB [51]. PI3K/AKT/mTOR 
signalling pathway activation by FGFR is important in cell 
survival and angiogenesis; a recent study strongly related 
their ligand, FGF2, as a prognostic biomarker, to the pro-
neural type of glioblastoma [8]. FGF1-FGFR also activates 
other pathways such as Jnk/p38 Mapk and STAT3/ NF-κB, 
with crucial implications in neurogenesis, apoptosis, cell 
proliferation, and invasion [52]. VEGF and FGF autocrine 
feedback loop has been shown to increase supra-acti-
vation of their cognate receptors and mediate tumour 
growth. A schematic overview of different signalling path-
ways involved in tumour cell proliferation, migration, and 
survival is depicted in Fig. 3.

Drug development in glioblastoma

The new molecular targeted therapies focus on the 
angiogenic TRKs and their signalling pathways inactiva-
tion. In 2009, the Food and Drug Administration (FDA) 
approved bevacizumab (Avastin), the first drug from the 
emerging class of new molecular therapy, as a second-line 
treatment of recurrent glioblastoma. Bevacizumab is 
also used as a VEGF inhibitor in other types of neoplasm: 
breast, lung, and colon [53, 54]. Nowadays, more molecu-
lar-specific drugs are being evaluated in clinical studies: 
cediranib, a potent VEGFR inhibitor (REGAL trial), suni-
tinib (Sutent), a multikinase inhibitor for VEGFR, PDGFR, 
c-Kit (tyrosine-protein-kinase KIT), sorafenib (Nexaver), 
and a multikinase inhibitor for VEGFR, PDGR, c-Kit, and for 
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RAS/RAF/ERK/MAPK signalling pathway [55–57]. Despite 
the new advances in drug discovery, the majority of newly 
targeted therapies are still in clinical trial phase, weather 
alone or in combination with standard chemotherapeutics 
(temozolomide, carboplatin, cisplatin, lomustine) or radio-
therapy [37, 58]. A novel discovery is the better outcome of 
patients with hypermethylation of O6-methylguanine-DNA 
methyltransferase (MGMT) gene promoter, presently be-
lieved to confer tumour chemosensitivity. MGMT gene 
promoter has been described in approximately 50% of 
glioblastoma multiforme. 

VEGF system remains an important target for the new 
molecular therapies. One example is VEGF Trap (afliber-
cept), acting as competitive VEGF-A isoforms binding to 
VEGFR1/2, with good effect on tumour cells but high host 
toxicity [59]; the capacity of VEGFR to act independently in 
GB has changed the perspective in GB treatment, making 
the receptors TKR a more rationale target. VEGFR2 inhibi-
tors, such as Angiocept (CT-322), showed promising results 
in a phase I clinical trial [60]. BEZ 235, a dual PI3K/mTOR 
inhibitor, had favourable outcomes in a phase I and II clini-
cal trial, being well tolerated in patients with solid tumour 

and prolonging the patients’ survival [61, 62]. Apoptosis in 
cancer cells treated with BEZ235 is mediated through ex-
trinsic pathway by activation of TNF-R1 (ligand-activated 
tumour-necrosis factor receptor-1), FAS (Apo-1), DR4/DR5 
(TRAIL receptors 1/2) that bind TNFα, CD95, and tumour 
necrosis factor-related apoptosis inducing factor (TRAIL) 
and activates caspase cascade through caspase 2. One 
in vitro study showed that responders to dual PI3K/mTOR 
inhibitor contained EGFR amplification or PI3K mutation 
[63]. Conversely, drug resistance is one of the major caus-
es for failure of response to treatment, and it seems that 
ERK pathway activation is one of the main factors of drug 
resistance [64, 65]. Another dual PI3K/mTOR inhibitor, XL 
765, acts by inhibition of phosphorylation of multiple PI3K/
phosphatase pathways proteins [66]. Congruent results 
were found in one study involving a PI3K/AKT inhibitor, 
BKM120 [67]. Despite unsure results in a phase I clinical 
trial for XL 765 due to adverse effects on liver function, an 
interesting phenomenon was the lack of apoptosis induc-
tion through caspase cascade; the antiproliferative proper-
ty was associated with G1 phase specific block [68]. An im-
portant problem in therapy failure is the continuous ability 
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Table 1. Molecular therapy currently in preclinical and clinical development

Agent Mechanism of action Phase development in glioblastoma Indication for other cancers

Cetuximab
[70]

EGFR phase II trial in patients with recurrent GB colon cancer

Erlotinib
[71, 72]

EGFR phase II trial in patients with newly diagnosed GB;
phase I/II trial in patients with recurrent diagnosed GB 
in combination with temsirolimus

NSCLC, 
pancreatic cancer

Nimotuzumab
[73]

EGFR phase III trial in patients with newly diagnosed GB pancreatic cancer

Angiocept (CT-322)
[74]

VEGFR-2 phase II trial in patients with recurrent diagnosed GB 
(insufficient efficacy)

solid tumours

ABT-414
[75]

active EGFR or 
mutant EGFRvIII

phase I trial in patients with recurrent unresectable GB solid tumours, NSCLC, prostate 
cancer, colorectal cancer

Gefitinib
[76]

EGFR phase I/II trial in patients with newly diagnosed GB in 
combination with radiation therapy

advanced or metastatic NSCLC, 
breast cancer

Aflibercept
[77]

anti-VEGF phase II trial in patients with recurrent diagnosed GB metastatic colorectal cancer 

Vatalanib
[78]

VEGFR, PDGFR, and 
c-KIT

phase I trial in patients with newly diagnosed GB in 
combination with standard therapy

metastatic colorectal cancer

Dasatinib
[79]

SRC, c-KIT, EPHA2, 
and PDGFR

phase II trial in patients with recurrent GB CML, ALL

Sunitinib
[80]

VEGFR 2, PDGFR, 
c-KIT, FLT3 

phase II trial in patients with recurrent GB gastrointestinal tumour, renal cell 
carcinoma

Sorafenib
[81, 82]

VEGFR 1-2, PDGFR 
α-β, c-KIT, FLT3, and 
RET

phase I trial in patients with newly diagnosed GB in 
combination with standard therapy;
phase II trial in patients with recurrent GB

renal cell carcinoma, renal 
tumours, hepatocellular carcinoma

Motesanib
[83]

VEGFR, PDGFR, c-KIT – NSCLC

Vandetanib
[84, 85]

VEGFR2, EGFR, and 
RET

phase II trial in patients with newly diagnosed GB and 
phase I/II trial in patients with recurrent GB

thyroid cancer, NSCLC

Pazopanib
[86]

VEGFR-1-2 -3, PDGFR 
α-β, c-KIT

phase II trial in patients with recurrent GB renal tumour, sarcoma

Bosutinib
[87]

Src and ABL phase II trial in patients with recurrent GB

Nilotinib
[88]

ABL1/BCR-ABL1 and 
KIT, PDGFR

– metastatic gastrointestinal 
stromal tumours

Axitinib
[89]

VEGFR-1, -2, -3 proved efficient in preclinical models of glioblastoma melanoma, NSCLC

Bez 235
[90]

PI3K/mTOR proved efficient in preclinical models of glioblastoma solid tumours, metastatic breast 
cancer

Everolimus
[91]

mTOR phase II trial in patients with newly diagnosed GB in 
combination with standard therapy

renal cell carcinoma, lymphoma, 
hepatocellular carcinoma

Temsirolimus
[72, 92]

mTOR phase II trial in patients with recurrent GB in 
combination with bevacizumab;
phase I/II trial in patients with recurrent diagnosed GB 
in combination with erlotinib

solid tumours, haematological 
malignancies

BKM120
[93]

PI3K/Akt proved efficient in in vitro models of glioblastoma solid tumours, NSCLC, prostate 
cancer, colorectal cancer, 
haematological malignancies

XL 184
[94]

MET, VEGFR-2 and 
RET, KIT

phase II trial in patients with progressive/recurrent GB medullary thyroid cancer, NSCLC

XL 765
[68]

PI3K, mTOR phase I trial in patients with recurrent/GB solid tumours, NSCLC

SF 1126
[95]

PI3K, mTOR proved efficient in preclinical models of glioblastoma solid tumours
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of the tumour to develop drug resistance mechanisms, 
observed after new molecular targeted therapy in many 
phase II/III clinical trials. Evolving theories are stating the 
importance of tumour heterogeneity and its correlation 
with angiogenesis, which are important factors for contin-
uum disease progression and evasion from new targeted 
therapies in glioblastoma. Table 1 highlights the different 
development phases for small molecular targeted drugs in 
glioblastoma [16, 29, 35, 69–100]. 

Several signalling pathway inhibitors, such as mTOR in-
hibitors everolimus and temsirolimus, showed dissatisfac-
tory results in clinical trials, in part due to rapid progression 
of drug resistance [101]. Everolimus, a specific inhibitor of 
mTOR, is known to activate compensatory pathways, al-
though favourable results were depicted in a few preclin-
ical and clinical studies when used in combination with 
bendamustine or radiotherapy. Apoptosis pathways are 
activated through PI3K/AKT/PKB system downstream in-
ducing phosphorylation of mTOR, not blocked by specific 
mTOR inhibitors [102, 103]. Perifosine (KRX-0401), an AKT 
pathway inhibitor, was found to induce cytotoxicity and 
evade drug resistance in a study regarding myeloma. In-
hibition of AKT through activation of anti-apoptotic sig-
nals is one response for obtaining drug efficacy. Another 
response is activation of JNK (c-Jun N-terminal kinases) 
pathway, which is a known byway implicated in cellular 
apoptosis [104, 105]. Increasing the perifosine concentra-
tion was demonstrated to have an amplified effect on 
cellular apoptosis. Apoptosis in correlation with treatment 
occurs through caspase cascade, particularly through 
caspase-3 and -9 [106]. 

Limited clinical benefit was reported after forerlotinib, 
gefitinib, or cetuximab in recurrent or primary glioblasto-
ma, either as monotherapy or in combination with other 
treatment approaches for glioblastoma. Multi-targeted in-
hibitor drugs are expected to be more effective compared 
to those that inactivate a single receptor. One example is 
the case of sorafenib, a multikinase inhibitor, with consis-
tently good outcomes in clinical trials [107, 108]. Sorafenib 
induces apoptosis by targeting Mcl-1 protein, an antiapop-
totic member of BCL2 family, in turn reducing cell viability. 
[109]. Similarly dasatinib, a SRC inhibitor (proto-oncogene 
tyrosine-protein kinase), known as an inhibitor of Bcr-Abl 
tyrosine kinase), has promising results by inhibiting cell 

invasion, sustaining apoptosis and tumour regression in 
glioblastomas and other malignant diseases. Apoptosis is 
induced by downregulation of PI3K/AKT and STAT3, which 
act by compromising PTEN function and Src inhibition. 
Loss of both PTEN and p53 induces primary glioblastoma, 
with devastating pathological and clinical effects. In vitro 
studies with dasatinib showed efficacy of apoptosis on 
EGFR-mutant cells sensitive to gefitinib, but with minimal 
effect on WT EGFR cells [110]. Dasatinib has an inhibitory 
effect also on PDGFR and c-Kit [111]. Disappointing results 
were also obtained in a clinical trial for glioblastoma pa-
tients with the multi-kinase inhibitor imatinib, a PDGFR, 
KIT, and ABL-kinase inhibitor, despite the success obtained 
in treating certain types of leukaemia [112]. Significant 
evidence of drug resistance mechanism is MET (MET 
proto-oncogene, receptor tyrosine kinase) amplification, 
detected after treatment with various tyrosine kinase 
inhibitors such as erlotinib, gefitinib, and imatinib. MET 
amplification is frequently associated with poor prognosis 
considering several biologic processes that initiate inva-
sive growth. MET activation is induced by a hypoxic state, 
producing a high sensitivity to HGF (hepatocyte growth 
factor), activating RAS/ MAPK, PI3K/AKT and STAT3 path-
ways that will induce the so-called “invasive switch” [113, 
114]. 

Based on the genetic and molecular pathology of glio-
blastoma, researchers provided new insight in treating 
this disease. EGFR amplification and PTEN mutation are 
known to induce drug resistance after treatment with 
EGFR inhibitors [115]. The pathological EGFR expression in 
glioblastoma is proposed to activate all intracellular mito-
genic signalling (PI3K/AKT/mTOR, Raf/MEK/ERK, and Src/
STAT pathways) by interacting not only through Grb, JAKs, 
Src, PI3K, phospholipase C-δ, SH1, SH2, and STAT but also 
through ErbB2 and ErB3 transactivation [35, 65]. 

Conclusions and perspectives

Researchers have observed that GB tumours are differ-
ent in many aspects, even when they derive from the same 
tissue, providing a reason for personalised therapy. An un-
derstanding of the molecular mechanisms regulating GB 
angiogenesis and invasion may be important in develop-
ment of curative therapeutic approaches for the treatment 
of this devastating disease.

PF 4691502
[96]

PI3K, mTOR proved efficient in in vitro models of glioblastoma colorectal cancer, breast and 
gastric cancer

Perifosine  
(KRX-0401)
[97]

AKT phase I/II trial in patients with recurrent GB;
phase II trial in patients with recurrent GB in 
combination with temsirolimus (ongoing)

colorectal cancer, MM, NSCLC, 
renal cell carcinoma,
ovarian cancer and 
haematological malignancies 

AZD 2014
[98]

mTOR proved efficient in in vitro models of glioblastoma 
stem like cells enhances radiosensitivity

solid tumours

Celgene (CC-223)
[99]

mTOR proved efficient in preclinical models of glioblastoma NHL and MM

INK 128
[100]

mTOR recruiting phase in patients with recurrent GB NHL, MM, solid tumours

Table 1. Cont.
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